Kinetic mechanism of AKT/PKB enzyme family.

نویسندگان

  • Xiaoling Zhang
  • Shiwen Zhang
  • Harvey Yamane
  • Robert Wahl
  • Arisha Ali
  • Julie A Lofgren
  • Richard L Kendall
چکیده

AKT/PKB is a phosphoinositide-dependent serine/threonine protein kinase that plays a critical role in the signal transduction of receptors. It also serves as an oncogene in the tumorigenesis of cancer cells when aberrantly activated by genetic lesions of the PTEN tumor suppressor, phosphatidylinositol 3-kinase, and receptor tyrosine kinase overexpression. Here we have characterized and compared kinetic mechanisms of the three AKT isoforms. Initial velocity studies revealed that all AKT isozymes follow the sequential kinetic mechanism by which an enzyme-substrate ternary complex forms before the product release. The empirically derived kinetic parameters are apparently different among the isoforms. AKT2 showed the highest Km value for ATP, and AKT3 showed the highest kcat value. The patterns of product inhibition of AKT1, AKT2, and AKT3 by ADP were all consistent with an ordered substrate addition mechanism with ATP binding to the enzymes prior to the peptide substrate. Further analysis of steady state kinetics of AKT1 in the presence of dead-end inhibitors supported the finding and suggested that the AKT family of kinases catalyzes reactions via an Ordered Bi Bi sequential mechanism with ATP binding to the enzyme prior to peptide substrate and ADP being released after the phosphopeptide product. These results suggest that ATP is an initiating factor for the catalysis of AKT enzymes and may play a role in the regulation AKT enzyme activity in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators.

Yellow-bellied marmots (Marmota flaviventris) exhibit a circannual cycle of hyperphagia and nutrient storage in the summer followed by hibernation in the winter. This annual cycle of body mass gain and loss is primarily due to large-scale accumulation of lipid in the summer, which is then mobilized and oxidized for energy during winter. The rapid and predictable change in body mass makes these ...

متن کامل

Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence.

Insulin regulates the expression of multiple hepatic genes through a conserved insulin response sequence (IRS) (CAAAAC/TAA) by an as yet undetermined mechanism. Protein kinase B/Akt (PKB/Akt), a member of the PKA/PKC serine/threonine kinase family, functions downstream from phosphatidylinositol 3'-kinase (PI3K) in mediating effects of insulin on glucose transport and glycogen synthesis. We aske...

متن کامل

Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the a...

متن کامل

A Regulatory Mechanism Involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the Control of Cell Proliferation

TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 20  شماره 

صفحات  -

تاریخ انتشار 2006